
Robert Winklera, Jürgen Sattelkowb, Jason D. Fowlkesc,d, Brett B. Lewisd, Philip D. Rackc,d and Harald Planka,b

a Graz Centre for Electron Microscopy, 8010 Graz, AUSTRIA
b Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, 8010 Graz, AUSTRIA
c Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
d Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Did you know, your FIB can do this?

Winkler, R. et al. ASC Appl. Mater. Interfaces (2017) 9, 8233
Hardware Requirements

1) **Focused Electron Beam**

2) **Gas Injection System (GIS)**

3) **Beam Control**
 (scanning coils, patterning)
Focused Electron Beam Induced Deposition (FEBID)

Basic principle

1. **Continuous precursor flow**
2. **Short e-beam pulse**
3. **Small beam displacement**

3D-Nanoprinting

- **Allows for 3D printing**
- **Enables 3D fabrication**
- **Flexibility in pulse duration and displacement control angles**

Focused electron beam injection

Pre-Cursor Gas

Gas Injection Nozzle

Substrate

Deposition

Dissociation

Physisorption

Volatile products

Δx

100 nm
Unique selling points

1) **Small feature size**

 Typical around 60 nm
 Down to Sub-20 nm

2) **Shape flexibility**

3) **Many materials**

 → Different functionalities of deposit are possible!

 e.g. insulating, semi-conducting, conducting, magnetic, resonant optics, ...

Unique Selling Points

4) **Direct-write** in one process step
 - No mask needed
 - No resist needed

5) **Substrate independent**
 - On almost any substrate **material**
 - On almost any **morphology**

6) Very low temperature rise
7) No unwanted sputtering
8) No unwanted material implantation

Winkler, R. et al. ACS AMI (2017) 9, 8233
Beam Parameter: Beam Current

1. **Patterning velocity** defines the segment angle
2. Use **LOWEST** beam currents

Winkler, R. et al. in submission
Gas/Beam Parameter: Working Regime

2 extreme conditions

- **electron limited**
 - excess of precursor molecules (electrons are limiting the growth)
 - Reduced proximal co-deposition
 - Better growth control
 - No influence of gas flux direction

- **precursor limited**
 - too less precursor molecules (excess of electrons)
 - Proximal deposition due to excess electrons
 - Strong influence of patterning direction in relation to the gas flux

Go towards electron limited conditions

LOW beam currents, high primary energies
HIGH precursor supply, refresh times, 3D-interlacing

HIGH beam currents, low primary energies
long stationary beams

Fowlkes et al., ACS Nano (2016) Winkler, R. et al. in submission
Gas Parameter: Enhance Precursor Supply

How to increase precursor coverage

Nozzle geometry

GIS alignment

Optimize:

1) **Height**
 Bring nozzle closer to the substrate (< 100 µm)

2) **X position**
 Align nozzle main axis along Y axis (X = 0 µm)

3) **Y position**
 Bring E-beam center close to nozzle edge (Y ~60 µm)

4) **Nozzle angle**
 If possible, use high angle port

1) **Patterning velocity** defines the segment angle
2) Use **LOWEST** beam **currents**
3) Use **HIGHEST** primary **energy**
Patterning Parameter: Pattern Velocity v

\[\text{Pattern velocity} (v) = \frac{\text{Point Pitch (PoP)}}{\text{Dwell time (DT)}} \]

1) Record calibration curve
2) Good start values: PoP = 1 nm, DT = 12 ms; equal to 83 nm/s
Beam Parameter: Focus and Astigmatism

An empirical approach to set focus and correct astigmatism for 3D-nanoprinting:

Step 1: Deposit a *Test-pillar*

Step 2: Improve *Focus* and *Astigmatism*

... Repeat Step 1 and 2 until you are satisfied with shape & diameter...

Step 3: Deposit a *Reference-array* of critical segments

Step 4: Adjust, until *desired segment* is just growing

Optimize beam quality until critical angle of your reference array is stable
Patterning Sequence for Complex 3D Structures

Problems:

- **Structure bending:**
 First fabricated elements are affected by forward scattered electrons arising from later deposited elements, which leads to an unwanted bending and thickening.

- **Drift issues:**
 Sample/charging drift often prevent that branches finally grow together.

Solution:

Alternating patterning sequence (**3D-interlacing**)

→ No inhomogeneous structure bending
→ Higher growth rates due to intrinsic, increased refresh times
→ Minimized effects of drift

Use alternating point sequence (**3D-interlacing**)
Simple 3D Structures – File Preparation

Defining patterning sequence via file (FEI - stream file)

Concrete Example: Gothic arcs

<table>
<thead>
<tr>
<th>Header</th>
<th>Concrete Example: Gothic arcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>s16</td>
<td>1</td>
</tr>
<tr>
<td>#patterning points</td>
<td></td>
</tr>
<tr>
<td>Dwell-Time</td>
<td>X-Coordinate</td>
</tr>
<tr>
<td>Dwell-Time</td>
<td>X-Coordinate</td>
</tr>
<tr>
<td>Dwell-Time</td>
<td>X-Coordinate</td>
</tr>
</tbody>
</table>

Synchronization point (optional)

Concrete Example:

<table>
<thead>
<tr>
<th>s16</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8307</td>
<td></td>
</tr>
<tr>
<td>250000 0 0</td>
<td></td>
</tr>
<tr>
<td>250000 1000 0</td>
<td></td>
</tr>
<tr>
<td>250000 0 0</td>
<td></td>
</tr>
<tr>
<td>250000 1000 0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>140000 1 0</td>
<td></td>
</tr>
<tr>
<td>140000 999 0</td>
<td></td>
</tr>
<tr>
<td>140000 2 0</td>
<td></td>
</tr>
<tr>
<td>140000 998 0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>140000 499 0</td>
<td></td>
</tr>
<tr>
<td>140000 501 0</td>
<td></td>
</tr>
<tr>
<td>140000 500 0</td>
<td></td>
</tr>
</tbody>
</table>

(1 0 1000)
Complex 3D Structures – File Preparation

3D-FEBID generator software (available soon)

Winkler, R. et al. ASC Appl. Mater. Interfaces (2017) 9, 8233
Fowlkes et al., in preparation
Preparation Guide

1) GIS Optimization [1]

- a) steeper angle
- b) closer
- c) on-axis

Hints, tips and tricks

Good values to start with:
- Angle: 52°
- Distance GIS nozzle to substrate < 100 µm
- E-beam center at X = 0 µm, Y ≈ 60 µm

2) Stream File Preparation

- a) Harmonize structure dimensions with Horizontal Field Width (→ Magnification)
- b) Translate real dimensions to pixel
- c) Calculate patterning points according to your point pitch
- d) Adjust dwell time for each point according to the desired angle (calibration upfront!)
- e) Arrange patterning points in an alternating point sequence (3D interlacing)
- f) Alternatively to a) - e), use 3D-generator software (coming soon) [2], or contact us:
 Robert.winkler@felmi-zfe.at
 Harald.Plank@felmi-zfe.at

Hints, tips and tricks

- To enable desired PoP size and to avoid potential rounding errors use high magnifications
- What is the resolution of your patterning engine?
 12bit: 4096 points
 16bit: 65536 points
 \(\rightarrow \) Horizontal Field Width/Resolution = 1 Pixel
- 3D-interlacing is highly recommended for stable architectures

3) Setup microscope

- a) Heat precursor at least 30 minutes before deposition
- b) Bring sample surface into ideal position relative to the optimized GIS
- c) Set highest primary energy \(^{[1,2]}\) and
- d) Set lowest beam current \(^{[1,2]}\)

4) Beam focus

- a) Rough beam alignment with inserted GIS
- b) Switch to high magnification (~ 500 nm HFW)
- c) Deposit testspot
- d) Adjust focus and correct astigmatism
- e) Repeat step c) and d) until diameter is satisfying
- f) Deposit test-array and monitor sample current concerning stability and repeat c-f if needed

5) Deposition

- a) Select deposition area in close proximity to focused area
- b) Select necessary magnification
- c) Load and arrange file(s)
- d) Think about fabrication order (shadowing/co-deposition)
- e) Wait for mechanical drift stabilization
- f) Open GIS valve and wait until pressure is in equilibrium
- g) Start deposition
- h) Wait with imaging until vacuum level is low again to avoid contamination

Hints, tipps and tricks

- @b) Eucentric height or defined GIS-surface distance
- @c) at FELMI: 30 keV
- @d) at FELMI: 21 pA
- @a) otherwise no visible pillar might grow
- @b) so that you can measure the deposited testspot afterwards with high accuracy
- @e) at FELMI: diameter about 52 nm for MeCpPtMe\(_3\) precursor and 30 keV/21 pA
- @f) at FELMI: A horizontal segment should grow at 4 ms and 1 nm PoP (= 250 nm/s)

- @a) this ensures almost identical focal quality
- @b and c) so that the designed file has the correct PoP
- @d) for multiple files always pattern towards GIS to avoid gas flux shadowing.
- @e) depends on stage stability. At FELMI ~ 15 minutes
- @f) at FELMI at least 3 minutes

- Be careful with beam shift option!
- For very high structures: precursor supply gets complicated \(\rightarrow\) different growth rates

[1] Winkler et al., in submission
Summary

Focused Electron Beam induced deposition (FEBID) is capable for **3D-nanoprinting** of freestanding, complex geometries.

The main **advantages** are
- Feature sizes below 20 nm
- Manifold materials and functionalities
- Almost substrate independent (morphology, material)
- Direct-write of complex structures

Reliable fabrication is challenging due to the **high number of process parameters** involved. Evaluating the **most important factors** revealed high-fidelity 3D-printing at:

- Low beam current
- High primary energy
- High precursor coverage
- Excellent beam focus
- 3D-interlacing patterning strategy
- A lot of patience!

Good values to start with
- MeCpPtMe$_3$
- $U = 30$ keV
- $I = 21$ pA
- Testspot size @5s: 52 nm
- PoP = 1 nm or lower
- DT (@PoP 1 nm) = 12 ms for ~ 45° segment angle

For further question contact us: Robert.winkler@felmi-zfe.at Harald.Plank@felmi-zfe.at
Acknowledgements

- **Scientific partners**: Prof. Dr. P.D. Rack, Dr. J.D. Fowlkes and B. Lewis (University of Tennessee & Oak Ridge National Laboratories, USA); Prof. Dr. M. Huth (Goethe Universität Frankfurt, GERMANY); Prof. G.E. Fantner (EPFL Lausanne, SWITZERLAND)

- **Industry partners**: Dr. E.J. Fantner, Dr. C. Schwalb, Dr. M. Winhold, DI T. Strunz, DI F. Hofbauer, Dr. V. Stavrov

- **Funding agencies**: CDG, ACR, EU programs, FWF, FFG, ASEM
Thank you for your attention!

Science Meets Art:
3D-Nano-model of the glass pyramids of the Louvre (Paris) in a scale of 1:8,000,000